Cellular Responses to Mechanical Stress Invited Review: Mechanisms of ventilator-induced lung injury: a perspective
نویسنده
چکیده
Dos Santos, C. C. and A. S. Slutsky. Invited Review: Mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89: 1645–1655, 2000.—Despite advances in critical care, the mortality rate in patients with acute lung injury remains high. Furthermore, most patients who die do so from multisystem organ failure. It has been postulated that ventilator-induced lung injury plays a key role in determining the negative clinical outcome of patients exposed to mechanical ventilation. How mechanical ventilation exerts its detrimental effect is as of yet unknown, but it appears that overdistension of lung units or shear forces generated during repetitive opening and closing of atelectatic lung units exacerbates, or even initiates, significant lung injury and inflammation. The term “biotrauma” has recently been elaborated to describe the process by which stress produced by mechanical ventilation leads to the upregulation of an inflammatory response. For mechanical ventilation to exert its deleterious effect, cells are required to sense mechanical forces and activate intracellular signaling pathways able to communicate the information to its interior. This information must then be integrated in the nucleus, and an appropriate response must be generated to implement and/or modulate its response and that of neighboring cells. In this review, we present a perspective on ventilatorinduced lung injury with a focus on mechanisms and clinical implications. We highlight some of the most recent findings, which we believe contribute to the generation and propagation of ventilator-induced lung injury, placing a special emphasis on their implication for future research and clinical therapies.
منابع مشابه
Invited review: mechanisms of ventilator-induced lung injury: a perspective.
Despite advances in critical care, the mortality rate in patients with acute lung injury remains high. Furthermore, most patients who die do so from multisystem organ failure. It has been postulated that ventilator-induced lung injury plays a key role in determining the negative clinical outcome of patients exposed to mechanical ventilation. How mechanical ventilation exerts its detrimental eff...
متن کاملMicroarray analysis of regional cellular responses to local mechanical stress in acute lung injury.
Human acute lung injury is characterized by heterogeneous tissue involvement, leading to the potential for extremes of mechanical stress and tissue injury when mechanical ventilation, required to support critically ill patients, is employed. Our goal was to establish whether regional cellular responses to these disparate local mechanical conditions could be determined as a novel approach toward...
متن کاملCellular stress failure in ventilator-injured lungs.
The clinical and experimental literature has unequivocally established that mechanical ventilation with large tidal volumes is injurious to the lung. However, uncertainty about the micromechanics of injured lungs and the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. In this review we focus on experimental ev...
متن کاملVentilator-induced lung injury: in vivo and in vitro mechanisms.
A lung-protective ventilator strategy significantly reduces mortality in patients with acute lung injury. Substantial progress has been made in understanding how mechanical stress can injure the lung, both in terms of alterations in barrier properties of the pulmonary endothelium and epithelium as well as in stimulating proinflammatory responses of macrophages and neutrophils.
متن کاملLinking lung function and inflammatory responses in ventilator-induced lung injury.
Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000